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Abstract

The Lees–Edwards description of bi-periodic boundary conditions has been extended to the streamfunction and
streamfunction–vorticity formulation in sliding bi-periodic frames. The required compatibility conditions are formu-
lated and uniqueness of the solution is shown. The model has been implemented in a spectral element method context
to describe bulk shear behavior far away from walls, where no simple periodic boundary conditions can be used. In the
numerical model a Lagrangian multiplier is introduced to couple the shearing boundaries. The proposed method has
been validated for a mathematical test problem; convergence is shown and the influence of the order of approximation
of the Lagrangian multiplier is studied. Finally, results are presented for drop coalescence across the boundaries of the
bi-periodic frame.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Blending or mixing of immiscible polymers offers an attractive and efficient route to produce �new� mate-
rials with tailor made properties. The mechanical properties of these multi-phase polymer blends are inti-
mately connected with the morphology imparted during processing. Hence, understanding the connection
between applied flow and morphology development is vital to optimize the processing and therefore the
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resulting properties of blends. In the literature a large number of comprehensive experimental and theoret-
ical studies of the morphology development in simple (shear) flow fields are reported, and some of this work
is summarized in the review by Tucker and Moldenaers [1]. Although considerable fundamental under-
standing of morphology changes during (shear) flow has been obtained already, the prediction of the (tran-
sient) rheology coupled with the micro structure development still remains a challenge. One of the main
difficulties, which is addressed in the current paper, is the correct description of bulk shear behavior far
away from the shearing walls.

In 1972, Lees and Edwards [2] proposed a bi-periodic domain concept for molecular dynamics simula-
tions by describing sliding boundary conditions for simple shear flow, which is nowadays referred to as
Lees–Edwards boundary conditions. Recently, this scheme has been used with the Lattice Boltzmann meth-
od to solve particle suspension [3] and phase separation problems [4,5]. It has also been applied to concen-
trated emulsion problems by a Lagrangian–Eulerian method with a re-meshing technique using Voronoi
tessellation [6]. Hwang et al. [7] extended the sliding bi-periodic frame concept of Lees and Edwards for
discrete particles to continuous fields and combined it with the velocity pressure formulation of the ficti-
tious-domain/finite element method.

In this study the sliding-periodic frame is used to describe drop deformation, breakup and coalescence in
a shear flow. Essentially, after formulating the corresponding flow equations for a blend of two Newtonian
fluids in the absence of inertia, this reduces to the description of the streamfunction–vorticity formulation
for Lees–Edwards boundary conditions which is the main objective of this paper. In general for the stream-
function–vorticity formulation with Dirichlet-type of boundary conditions complicated integral type
boundary conditions need to be specified in order to obtain an equivalent formulation [8].

The manuscript is organized as follows: first a description is given of the sliding-periodic frame concept
and the governing equations in both a streamfunction and a streamfunction–vorticity formulation are de-
rived. In Section 4, the weak formulation of the latter is described and equivalence of the variational problem
with the original strong form is shown. Details of the implementation are given where a Lagrangian multi-
plier is used to couple the shearing boundaries. In Section 5 the model is validated using a mathematical test
example and hp-convergence is shown. Finally, the streamfunction–vorticity formulation is combined with
the Cahn–Hilliard theory and the process of coalescence of drops across bi-period frames is studied.
2. Sliding frames

In order to describe bulk shear behavior far away from walls, the sliding frame concept of Lees and
Edwards [2] can be used. This concept is illustrated in Fig. 1. If we have a steady shear flow characterized
Fig. 1. Sliding frame concept of Lees–Edwards.
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by an average shear rate _c, each row of frames moves with a velocity such that the average linear velocity
profile, relative to the frame, is the same in each frame. This means that the relative velocity between rows is
_cH and that the amount of slide D between rows, see Fig. 1, is given by
D ¼ _cHt; ð1Þ

where H is the height of the frame and t is the time. Within each frame the linear velocity profile is given by
u ¼ u0 þ _cy; v ¼ 0; ð2Þ

where u and v are the velocity components in x and y direction, respectively, and y is the local coordinate
within a frame (y = 0 at the lower boundary of a frame). When crossing a row boundary there is a jump in
velocity of � _cH (y = H in the first frame and y = 0 in the next). However, this is compensated by the frame
velocity, which is _cH higher leading to a continuous velocity in a global stationary frame.

Now we assume that the velocity relative within each frame is the same and therefore the velocity be writ-
ten as
u ¼ ûþ u0 þ _cy; v ¼ v̂; ð3Þ

where the perturbations from the linear profile û and v̂ are continuous functions from frame to frame and
are furthermore as smooth as needed for the theory, i.e. we can take derivatives as much as we need.
Note, that due to the continuity of û and v̂ the velocity in a stationary global frame is continuous when
crossing frame boundaries. This is the essential feature of the sliding frame concept that cannot be
achieved by taking periodical boundary conditions alone. The continuity of the velocity is particularly
important when studying heterogeneous systems such as particles in flow or drop coalescence, such as
studied is this paper.

Since the solution in each frame is identical we can restrict our efforts to a single frame only and trans-
form the continuity requirements of ûðx; y; tÞ and v̂ðx; y; tÞ to boundary conditions in a single frame. In
Fig. 2 we have depicted a single frame of width L and height H, where the points A and B (and C and
D) within the full frame stacking of Fig. 1 are really the same points. This means that for the continuity
requirements of û and v̂ we can equivalently require the values in A and B (and C and D) within a frame
to be the same or:
Horizontal : ûð0; y; tÞ ¼ ûðL; y; tÞ for y 2 ½0;H �; ð4Þ
Vertical : ûðx;H ; tÞ ¼ ûðfx� _cHtgH; 0; tÞ for x 2 ½0; LÞ; ð5Þ
Fig. 2. A single frame. The domain is denoted by X. The boundary of the frame is C ¼
S4

i¼1Ci.
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and the same for v̂. In Eq. (5), we have introduced the operator {}w to denote the modulo L function [7]. In
the following, we will call a function that fulfills Eqs. (4) and (5) to be continuous sheared periodic. For u and
v this translates to the following periodic boundary conditions:
Horizontal :
uð0; y; tÞ ¼ uðL; y; tÞ
vð0; y; tÞ ¼ vðL; y; tÞ

�
for y 2 ½0;H �; ð6Þ

Vertical :
uðx;H ; tÞ ¼ uðfx� _cHtgH; 0; tÞ þ _cH

vðx;H ; tÞ ¼ vðfx� _cHtgH; 0; tÞ

(
for x 2 ½0; LÞ; ð7Þ
or u and v is sheared periodic, but only v is continuous and u is not.
3. Governing equations

3.1. Velocity–pressure formulation

We assume that the flow is governed by the Stokes problem
�rp þ gr2u ¼ f in X; ð8Þ
r � u ¼ 0 in X; ð9Þ
where u = (u, v) is the velocity vector, p is the pressure and g is the viscosity of the fluid. When studying the
Stokes problem in a sliding frame we need, in addition to Eqs. (6) and (7), similar periodicity conditions for
the traction on the boundary C, a pressure level and a level for the velocity components in both directions
[7].

3.2. Streamfunction formulation

In order to eliminate the pressure and the incompressibility condition Eq. (9) we introduce the stream-
function w as follows:
u ¼ ow
oy

; v ¼ � ow
ox

. ð10Þ
In this way, Eq. (9) is automatically satisfied. After applying the curl operator on Eq. (8) and substituting
Eq. (10) we get the following biharmonic equation:
r4w ¼ g in X; ð11Þ

where
g ¼ � 1

g
ðr � f Þz ¼ � 1

g
ofy
ox

� ofx
oy

� �
. ð12Þ
Using Eq. (3) and the definition of the streamfunction equation (10) we can split w as follows:
w ¼ ŵþ u0y þ
1

2
_cy2 in X; ð13Þ
where
oŵ
ox

¼ �v̂;
oŵ
oy

¼ û. ð14Þ
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Without loss of generality we can safely assume that ŵ is a continuous sheared periodic function or
ŵð0; y; tÞ ¼ ŵðL; y; tÞ for y 2 ½0;H �; ð15Þ
ŵðx;H ; tÞ ¼ ŵðfx� _cHtgH; 0; tÞ for x 2 ½0; LÞ. ð16Þ
The reason is that because of the sheared periodicity of û and v̂ together with Eq. (14) the ‘‘profile’’ of ŵ
is the same along the boundaries C1 and C3 (and C2 and C4), except that they differ by a constant. The
constant between C1 and C3 is the ‘‘flux’’ through any curve connecting A and B in Fig. 2 (for C2 and C4

it is the flux through any curve connecting C and D). By adjusting the frame velocity in x and y direction
we can always make the fluxes equal to zero. Adjusting the frame velocity is allowed because the absolute
velocity of the frame has no physical significance when inertia has been neglected. This is related to the
necessary specification of the level of the velocity in the velocity–pressure formulation of the sliding peri-
odic frame [7].

Again for the same reason that translational velocities are of no physical importance here, we can safely
take u0 ¼ � 1

2
_cH , leading to
w ¼ ŵ� 1

2
_cðyH � y2Þ; ð17Þ
which means that w is continuous sheared periodic and ow/oy follows the boundary conditions for u:
ow
oy

ð0; y; tÞ ¼ ow
oy

ðL; y; tÞ for y 2 ½0;H �; ð18Þ

ow
oy

ðx;H ; tÞ ¼ ow
oy

ðfx� _cHtgH; 0; tÞ þ _cH for x 2 ½0; LÞ; ð19Þ
where we have used that û ¼ oŵ=oy is continuous sheared periodic. Note, that all other derivatives and
higher-order derivatives are continuous sheared periodic, when needed for the theory.

In the next section, when dealing with the weak forms, we will show that w can be determined uniquely
up to an integration constant, provided we fulfill the compatibility condition
Z

X
g dX ¼ 0. ð20Þ
Using Eq. (12) and Stokes� theorem we find that
Z
X
g dX ¼ � 1

g

Z
C
t � f dC ¼ 0; ð21Þ
where t is the unit vector tangential to the boundary C. We have used that f is a sheared periodic function.
In our two-phase system, see Section 5.2, we have f = �ql$c and therefore fulfills this condition.
3.3. Streamfunction–vorticity formulation

The streamfunction formulation leads to a biharmonic equation (11) which, within a variational context,
leads to severe continuity requirements. Therefore Eq. (11) is usually split into two Poisson equations in the
following way:
�r2x ¼ g in X; ð22Þ
� r2w ¼ x in X; ð23Þ
where we have introduced the vorticity x as
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x ¼ ov
ox

� ou
oy

. ð24Þ
In the next section, where we will describe the weak forms, we will show that we need to fulfill the compat-
ibility conditions
Z

X
g dX ¼ 0; ð25ÞZ

X
x dX ¼ � _cLH ; ð26Þ
in order to be consistent with the streamfunction formulation. Eq. (25) is the same as the compatibility
condition in the streamfunction formulation and is fulfilled. The streamfunction w can again be deter-
mined uniquely up to an integration constant and the vorticity is a unique function. Eq. (26), which
is a constraint on x for Eq. (22), can be implemented using a Lagrangian multiplier. However, it is easier
to solve Eq. (22) with a prescribed (Dirichlet) value in a single point (say ~x is the solution). Then add an
arbitrary constant c
x ¼ ~xþ c. ð27Þ

Applying Eq. (26) leads to
c ¼ � _c� 1

LH

Z
X

~x dX. ð28Þ
Notice, that Eqs. (22) and (26) are fully decoupled from Eq. (23) if g does not depend on w.
4. Weak formulation

We will now derive the weak formulation of Eqs. (22) and (23) for use in the spectral element dis-
cretization and for a proof of the uniqueness. After multiplying Eqs. (22) and (23) by test functions w1

and w2, respectively, integrating over the domain X and partial integration of the second-order terms
we get
ðrx;rw1Þ �
ox
on

;w1

� �
C

¼ ðg;w1Þ for all w1; ð29Þ

ðrw;rw2Þ �
ow
on

;w2

� �
C

¼ ðx;w2Þ for all w2; ð30Þ
where we have defined
ða; bÞ ¼
Z
X
ab dX; ða; bÞC ¼

Z
C
ab dC. ð31Þ
We now assume that w1 and w2 are continuous sheared periodic test functions. Furthermore, we assume
that x and w are also continuous sheared periodic functions, that ox/on fulfills
ox
on

ð0; y; tÞ ¼ � ox
on

ðL; y; tÞ for y 2 ½0;H �;

ox
on

ðx;H ; tÞ ¼ � ox
on

ðfx� _cHtgH; 0; tÞ for x 2 ½0; LÞ;
ð32Þ



274 P.D. Anderson et al. / Journal of Computational Physics 212 (2006) 268–287
and that ow/on obeys
ow
on

ð0; y; tÞ ¼ � ow
on

ðL; y; tÞ for y 2 ½0;H �;

ow
on

ðx;H ; tÞ ¼ � ow
on

ðfx� _cHtgH; 0; tÞ þ _cH for x 2 ½0; LÞ.
ð33Þ
Note that n is the outside normal and that the boundary conditions are fully consistent with the previous
section. Using these boundary conditions we get the following weak formulation: Find continuous sheared
periodic functions x and w such that
ðrx;rw1Þ ¼ ðg;w1Þ; ð34Þ
ðrw;rw2Þ � ð _cH ;w2ÞC3

¼ ðx;w2Þ; ð35Þ
for all continuous sheared periodic test functions w1 and w2. Reversely, it is easy to show that if the weak
form is fulfilled, the original equations (22) and (23) and the boundary conditions equations (32) and (33)
are retained. Hence, the variational problem is fully equivalent to the original strong form.

Hiding in Eqs. (34) and (35) are two compatibility conditions, similar to the compatibility relation be-
tween the source terms and the normal fluxes through the boundary for a Poisson equation with full Neu-
mann boundary conditions. Substituting w1 = 1 and w2 = 1 into Eqs. (34) and (35) we get Eqs. (25) and
(26), respectively. These compatibility conditions must be fulfilled beforehand, because the variables being
solved, x and w, respectively, are not present in these equations. The uniqueness of the w and x are proven
in Appendix A.

4.1. Implementation

The implementation of the streamfunction formulation in a sliding bi-periodic domain is complicated by
the fact that nodal points on the top and bottom boundary of the domain are not coupled with the same x-
coordinate, but shifted with an amount that depends on the shear-rate _c, elapsed time t and height H of the
domain. A Lagrangian multiplier k is used to couple the unknown, say a for either x or w (or c or l, see
Section 5.2), on the top and bottom boundary in the following way:
Z

oXup
kðxÞ½aðx;H ; tÞ � aðfx� _cHtg�; 0; tÞ� dC ¼ 0. ð36Þ
For reasons explained in the following and illustrated in Fig. 3, the integral in equation (36) is split into two
parts and evaluated per element:
Z

oXup
e

kðxÞaðx;H ; tÞ dC�
Z
oXup

e

kðxÞaðfx� _cHtg�; 0; tÞ dC. ð37Þ
The Lagrangian multiplier is represented by
k ¼
XM
i¼1

kiwiðnÞ; ð38Þ
in which wi is the spectral element basis function and M � 1 the order of the approximation. The pro-
cedure we follow here in the context of spectral elements is similar to the mortar finite element method
[9]. A spectral element method [10,11] is used, since this method is suitable for capturing interfaces with
a small interfacial thickness [12]. Similar to a finite element method, the computational domain X is di-
vided into Nel non-overlapping sub-domains Xe, but now a spectral approximation is applied on each
element.



Fig. 3. Example of shifted coupling with third-order spectral elements (�) and second-order Lagrangian multipliers (s).
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Essentially, the spectral element basis functions wi are high-order Lagrangian interpolation polynomials
through the Legendre–Gauss–Lobatto integration points defined per element. A Legendre–Gauss–Lobatto
grid is constructed in each of the elements Xk, 1 6 k 6 K, where the grid GN is a tensor product of one-
dimensional Legendre–Gauss–Lobatto grids GN = Gx,N � Gy,N, where Gx,N and Gy,N are the ordered sets
{zj|j = 0, � � �, N} of the roots of
ð1� z2Þ d
dz

Ln ¼ 0; ð39Þ
where Ln is the nth-order Legendre polynomial.
Similarly as for the discretization of the for Lagrangian multiplier, the unknown a is described as:
a ¼
XN
j¼1

aj/jðnÞ; ð40Þ
in which N � 1 is again the order of the approximation. Evaluating the first part of the integral in equation
(37) gives
Z
oXup

e

kðxÞaðx;H ; tÞ dC ¼
Z 1

�1

XM
i¼1

kiwiðnÞ
 !

�
XN
j¼1

aj/jðnÞ
 !

dx
dn

����
���� dn ¼ dx

dn

����
����XN

j¼1

XM
i¼1

kiajI ij; ð41Þ
with
I ij ¼
Z 1

�1

wi/j dn.
The integrals Iij are determined exactly. The analysis of the second part of the integral in Eq. (37) is not as
straightforward as the first part. The argument of a, which is shifted with _cHt (modulo L), does not neces-
sarily have to coincide with a nodal point on the top boundary, as is illustrated in Fig. 3. The element is
therefore divided and integrated separately over the two domains ([�1,n*], [n*,1]).
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The second integral in Eq. (37) is now split over the two domains:
Z
oXup

e

kðxÞaðfx� _cHtg�; 0; tÞ dC ¼
Z n�

�1

XM
i¼1

kiwiðnÞ
 !

�
XN
j¼1

~aj/jðn� n� þ 1Þ
 !

dx
dn

����
���� dn

þ
Z 1

n�

XM
i¼1

kiwiðnÞ
 !

�
XN
j¼1

~~aj/jðn� n� � 1Þ
 !

dx
dn

����
���� dn

¼ dx
dn

����
���� XN

j¼1

XM
i¼1

ki~aj ~Kijðn�Þ þ
XN
j¼1

XM
i¼1

ki~~aj
~~Kijðn�Þ

 !
;

with
~Kij ¼
Z n�

�1

wiðnÞ/jðn� n� þ 1Þ dn and ~~Kij ¼
Z 1

n�
wiðnÞ/jðn� n� � 1Þ dn; ð42Þ
where ~a and ~~a are the unknowns in different elements, as illustrated with the lying brackets in Fig. 3. The
coefficients ~Kij and

~~Kij are again determined exactly.
After the final construction of a linear set of equations, the �multifrontal method� as used by the MA41

solver from the HSL-library [13] for sparse unsymmetric systems proves to work very well and is used in all
simulations including the bi-periodic boundary conditions.

5. Results

The implementation of the streamfunction–vorticity formulation in sliding bi-period frames is validated
using a mathematical test problem and the convergence of the model is studied. In Sections 5.2 and 5.3 the
model is combined with a diffuse-interface technique so that drop coalescence can be studied in bulk shear
flow.

5.1. hp-Convergence

To validate the use of Lagrangian multipliers to couple top and bottom elements a bi-periodic testing
function has to be used: f(x, y) = f(x + L, y) and f(x, y) = f(x, y + H), with L the width and H the height
of the domain. Second, a new testing function with a shifted argument is defined: gðx; yÞ �
f ðx� _cyt; yÞ ¼ f ðx̂; yÞ, introducing x̂ ¼ x� _cyt. To validate the model we introduce
f ðx; yÞ ¼ sinðpxÞ sinðpyÞ; ð43Þ

to generate the exact solution uðx; yÞ ¼ gðx; yÞ ¼ f ðx̂; yÞ.

Fig. 4 shows the testing function after the first time step (only slightly sheared) and after a full period T,
which is the amount of time needed to slide a window completely. A material point at y = 1 has then moved
exactly the entire length of the domain.

For validation purposes the Poisson equation�Du = h is considered where the right-hand side is given by
h ¼ � o2g
ox2

� o2g
oy2

¼ ð2þ _c2t2Þp2 sinðpx̂Þ sinðpyÞ þ 2 _ctp2 cosðpx̂Þ cosðpyÞ. ð44Þ
Subsequently, with a known right-hand side, the Poisson equation with a Lagrangian multiplier on the
boundary can be solved using spectral approximation with different polynomial orders, and the error
can be calculated with respect to the known exact solution. The results of the error, iu � uhi1, where uh
denotes the approximate solution, using sixth-order spectral element interpolation functions for u are sum-
marized in Fig. 5.
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Fig. 4. Testing function g(x, y) after first time step (a) t = 0.1, and after a full period (b) t = 2.

Fig. 5. The error as function of the number of degrees of freedom (Ndof). The function is approximated using sixth-order spectral
element interpolation functions and the Lagrangian multiplier is approximated with (s) one order, (�) two orders, (+) three orders,
(.) four orders, (/) five orders lower in an element.
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The trends in Fig. 5 are in line with known theory on hp finite element methods [14]. The error iu � uhi1
as a function of the number of degrees of freedom shows a more than linear decrease on a log-log scale,
indicating spectral convergence. Furthermore, Fig. 5 shows the relation between the error and the difference
between the order of the unknown and the Lagrangian multiplier. Seshaiyer and Suri [14] also showed that
there is little difference in the error if the order of the Lagrangian multiplier is chosen two orders lower with
respect to the spectral order of the unknowns ((*) broken line), rather than only one order difference ((s)
solid line). The error becomes substantially larger if the order difference is higher than two ((+) dash-dot
line and triangles (./)). In the remainder of the paper the order of approximation of the Lagrangian mul-
tiplier is chosen one order lower.

Fig. 6 shows the h-convergence for two different polynomial orders. Increasing the number of elements in
the domain yields a linear decreasing error on a log–log scale. This plot shows again the more than linear
p-convergence, as the slope of higher-order elements decreases faster.



Fig. 6. h-Convergence with the error as function of the number of free degrees of freedom, (s) fourth-order spectral elements, (�)
sixth-order elements.
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For the testing problem with a Lagrangian multiplier on the top and bottom boundary, an analytical
solution can be obtained for the Lagrangian multiplier
k ¼ og
oy

����
y¼1

¼ of
oy

� _ct
of
ox

� �����
y¼1

¼ ðp sinðpx̂Þ cosðpyÞ � _ctp cosðpx̂Þ sinðpyÞÞjy¼1 ¼ �p sinðpx̂Þ. ð45Þ
The results are summarized in Fig. 7. The numerically solved values (s, *) coincide with the exact solution
(solid and broken line), and the corresponding errors are plotted in the bottom and reflect the difference in
polynomial order. If the Lagrangian multiplier is of fourth order, the error with the exact solution is of
order 10�6, whereas the order of the error is 10�3 if only a second-order Lagrangian multiplier is used.

5.2. Drop coalescence

The sheared periodic boundary conditions are used to study drop deformation and coalescence in a bi-
period frame. In this section we limit ourselves to two drops and in the following section results are shown
with multiple drops where the processes of drop deformation, break up and coalescence occur simulta-
neously. To model these processes we use the diffuse-interface model which has a long history in fluid
mechanics [15–17], especially in the field of phase separation. Recently the method has been applied to
study various phenomena that occur in immiscible fluids [18–22].

The classical expression for the Ginzburg–Landau (GL) free energy fGL used in diffuse-interface model-
ing is based on the work of Cahn and Hilliard [23]
fGLðc;rcÞ ¼ f0ðcÞ þ
1

2
ejrcj2 ¼ � 1

2
ac2 þ 1

4
bc4 þ 1

2
ejrcj2; ð46Þ
where a and b are positive constants and e is the gradient energy parameter that is proportional to the inter-
action parameter v and c is the mass fraction of one of the two components. The chemical potential is ob-
tained from the variational derivative with respect to concentration
l ¼ dfGL

dc
¼ �acþ bc3 � er2c.
In order to comply with mass conservation for both components, the balance equation should be fulfilled:
dc
dt

¼ oc
ot

þr � ðcvÞ ¼ r �Mrl; ð47Þ



Fig. 7. Numerical results of the Lagrangian multipliers ((s) t = 0.1, and (�) t = 0.2) for the testing function g(x, y) together with the
exact solution (t = 0.1: solid line (—) and t = 0.2: broken line (- - -)) and corresponding errors (bottom), for fifth-order elements (left)
and third-order elements (right).
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with M the mobility, which is taken constant for simplicity in this work. The diffusion flux is assumed to be
proportional to the gradient of the chemical potential, which is more general than the common Fickian dif-
fusion, based on the concentration gradient $c, that does not hold for multiphase systems even at equilib-
rium. We note that to describe a real polymer blend, taking into account long chains and for example block
copolymers, the GL free energy is too simple and more complex formulations should be considered. How-
ever, the GL free energy will yield a correct qualitative behavior of a polymer blend in shear flow as shown
further in Fig. 13. In the following the focus is on the combination of Lees–Edwards boundary condition
and the streamfunction–vorticity formulation and more complex thermodynamical descriptions are beyond
the scope of this paper.

To obtain momentum conservation, a generalized Navier–Stokes equation can be derived for the veloc-
ity field [16]
q
ov

ot
þ ðv � rÞv

� �
¼ �qrgGL þr � gðrvþrvT Þ þ qlrc. ð48Þ
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Here gGL is the Gibbs free energy gGL = fGL + p/q, with p the local pressure and q the density. The viscosity
g generally depends on c but only here, without any serious restrictions, the iso-viscous case will be consid-
ered. Compared to the Navier–Stokes equations, in Eq. (48) only one extra capillary term ql$c appears
which reflects the interfacial tension. This modification accounts for hydrodynamic interactions, i.e. the
influence of the concentration c or the morphology on the velocity field and, hence, describes the spatial
variations of the velocity field due to the presence of interfaces.

In absence of inertia, the left-hand side of Eq. (48) vanishes and after taken the curl of the remaining
equation we get:
Fig. 8.
(b) the
gr4w ¼ qr� lrc. ð49Þ

In dimensionless form the complete set of equation reads:
dc
dt

¼ 1

Pe
r2l; ð50Þ

l ¼ c3 � c� C2r2c; ð51Þ

r4w ¼ 1

Ca
1

C
r� lrc; ð52Þ
where three dimensionless groups are appearing in the governing equations: the Péclet number Pe, the cap-
illary number Ca and the Cahn number C. For more details see [21]. These equations are solved with Lees–
Edwards boundary conditions similar to (w,x).

Two drops are considered coalescing in a shear field, at the same distance and position relative to each
other, but at different positions in the domain, see Fig. 10. From a mathematical point of view one expects
an identical result, however, since the convective- and diffusive part of the Cahn–Hilliard equation are dis-
cretized and numerically solved, different results can be expected depending on the time step. Sixth-order
spectral elements are used to approximate the unknowns (w,x,c,l); for the Lagrangian multiplier again
one order lower is chosen.

Fig. 8(a) shows the two drops in the initial shear field, unperturbed by interfacial forces. Fig. 8(b) shows
the same two drops after the fifth time step at t = 0.05, but now with the velocity due to shear subtracted.
The effect of the interfacial forces can be clearly observed.
(a) Combined concentration contour plot and velocity vector plot for two coalescing drops in shear flow (initial field t = 0).
velocity due to shear is subtracted. The velocity vectors are due to interfacial forces (t = 0.05).
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Fig. 9 shows the combined mesh discretization and contour lines for the two coalescing drops. In
the high-order spectral element mesh, the non-equidistant Legendre–Gauss–Lobatto integration points
can be observed, and the closeup gives an idea of the number of integration points describing the
interface.

The simulation as shown in Fig. 10 describes coalescence under weak shearing conditions where
Ca = 0.1. The first and third row show how two drops coalesce in the center of the domain and
how interfacial forces minimize the interfacial area. The second and fourth row show the results of
the simulation with the same drops at the same relative initial distance, but at a different position in
the domain. The two simulations appear to be similar, based on the assessment of the morphology pic-
tures. Fig. 11 quantifies the small differences between the two simulations showing the maximum vor-
ticity max|$2w|, which is a measure for the coalescence time, with the time step as the varying
parameter. A similar criterium was used by Verschueren [24] to test scaling laws in diffuse-interface
modeling for coalescing drops.

With decreasing time step convergence of the curves is found, although and a sufficient accuracy is ob-
tained with a time-step of Dt = 10�3.

5.3. Multi-drop flow

Finally, a multi-drop case is considered where we make a qualitative comparison of the influence of
Dirichlet versus Lees–Edwards boundary conditions on the evolving morphology. The results are shown
in Fig. 12. The column on the left depicts the results where we used Dirichlet boundary conditions to pre-
scribe the shear flow; the column on the right are with Lees–Edwards boundary conditions. The initial dis-
tribution of drops was the same in both cases; 36 drops, with different drop radii, are placed in the domain
at t = 0. During startup of the shear flow the same deformation behavior is observed in both cases. But
after t = 0.6 differences appear in the drop morphology close to the moving walls. Even clearer is the influ-
ence of the boundary condition at t = 0.9 and t = 1.5. Here, we observe that in case of Dirichlet boundary
Fig. 9. Sixth-order spectral element mesh (t = 0.05) for two coalescing drops and closeup with concentration contour lines
[�0.9�0.500.50.9].



Fig. 10. Concentration contour lines [�0.100.1] of two coalescing drops at exactly the same distance but at different positions in the
domain, calculated with C = 0.04, Pe = 1/C, Ca = 0.1 and Dt = 10�2. (a) Coalescence in the domain, (b) coalescence over the domain
boundary.
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conditions, the drops are attached to the wall and have a fixed contact angle of 90�. Deformation and topo-
logical transitions are not possible at the moving walls.

In the column on the right we are looking at a bi-period frame so that drops at the bottom wall
are �connected� with drops at the top wall. In this case we do not have a contact angle, which eventu-
ally will always influence the bulk behavior, and drop deform across the boundaries. For flow problems
like these it is essential that the Lees–Edwards boundary conditions are used in order to get bulk
behavior.
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Fig. 11. The maximum vorticity as a function of time for two coalescing drops across the top and bottom boundary ((�), broken
line) and in the center of the domain ((s), solid line), but at the same initial relative distance, simulated with different
time steps (Dt = 10�2, Dt = 10�3 and Dt = 10�4) to show time convergence.

Fig. 12. Multi-drop deformation in shear flow. The column on the left depicts the results where we used Dirichlet boundary conditions
to prescribe the shear flow; the results in the column on the right are with the Lees–Edwards boundary conditions.
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Fig. 13. First-normal stress difference versus time.
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The first-normal stress difference has proven to be extremely sensitive to morphological changes in
immiscible blends (e.g. [1,25]). To determine the first-normal stress difference N1 we use the following
relation:
N 1

C
¼ qyy � qxx; ð53Þ
which can be calculated straightforwardly by using the results of the diffuse interface simulations. Here qxx
and qyy are the components of the anisotropy tensor
q ¼ 1

V

Z
S

nn� 1

3
I

� �
dS;
where C is the interfacial tension, V is the volume of the fluid, S its surface and n denotes the normal at the
interface.

Fig. 13 shows the corresponding first-normal stress difference. The evolution of the calculated N1 is sim-
ilar to the experimentally observed evolutions of N1 [26–28]. Initially, during the deformation of the drops,
N1 increases. When the drops breakup, the anisotropy of the structure decreases and consequently the first-
normal stress difference is reduced. Finally, a steady state deformation and hence constant N1 is reached.
The noise in the curve in Fig. 13 is due to the fact that only a relatively small number of drops is used in the
calculations. Increasing their number will reduce the statistical noise and smooth the curve.
6. Conclusions

The Lees–Edwards description of bi-periodic boundary conditions has been extended to the stream-
function and streamfunction–vorticity formulation in sliding bi-periodic frames. The required compatibil-
ity conditions are formulated and uniqueness of the solution in both formulations is shown. Lagrangian
multipliers are used to introduce coupling in the shifted periodic fashion. A spectral element discretiza-
tion is applied to solve the flow equations. From the validation results of this method it can be concluded
that, if the order of the Lagrangian multipliers is chosen two orders lower than the order of the
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unknowns, no significant loss of accuracy is observed with respect to the results with only one order dif-
ference between the unknowns and Lagrangian multipliers. This is in line with the recently appeared lit-
erature [14].

In addition in this paper it is shown that the boundary conditions can have a large influence on the
morphology that develops and that they require special attention if bulk behavior is subject of study. Bi-
periodic boundary conditions can be used to eliminate unwanted wall effects but make it impossible to ap-
ply shear on the system. In order to describe bulk shear behavior one needs to use the concept of a sliding
periodic frame.
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Appendix A. Uniqueness of streamfunction w and vorticity x

The uniqueness of x can be tested as follows. Assume that there are two solutions x1 and x2 fulfilling
Eq. (34). Then we find by subtracting the equations that
ðrðx1 � x2Þ;rw1Þ ¼ 0; ðA:1Þ

for all continuous sheared periodic test functions w1. Now take w1 = x1 � x2 and we find that
Z

X
jrðx1 � x2Þj2 dX ¼ 0; ðA:2Þ
leading to
rðx1 � x2Þ ¼ 0 or x1 ¼ x2 þ c; ðA:3Þ

where c is an arbitrary constant. This shows that x can be determined up to an arbitrary constant from Eq.
(34), which is a general result for a Poisson equation in a sheared periodic region. As has been shown in the
previous section, the integration constant for x can be determined from the compatibility condition (26)
and therefore x is unique.

With the same reasoning and given x it is easy to show that from Eq. (35) we can uniquely determine w
up to an integration constant. This constant is of no significance for the flow and can be specified by giving
w an arbitrary value at a some point in the flow.

We have now shown that the streamfunction–vorticity formulation leads to a unique solution (up to
an integration constant for w). We still have to show that this solution for w is identical to the one
found within a streamfunction formulation. In essence it means that we have to show that the bound-
ary conditions are the same or consistent, because the equations inside the domain are identical (Eq.
(11) follows directly from Eqs. (22) and (23)). We follow again the route of the weak form. After mul-
tiplying Eq. (11) with a test function w, integrating over the domain and partial integrating twice, we
find that
ðr2w;r2wÞ þ o

on
ðr2wÞ;w

� �
C

� r2w;
ow
on

� �
C

¼ ðg;wÞ for all w. ðA:4Þ
Now we assume that the test function w is continuous sheared periodic with further requirement that ow/on
fulfills
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ow
on

ð0; y; tÞ ¼ � ow
on

ðL; y; tÞ for y 2 ½0;H �;

ow
on

ðx;H ; tÞ ¼ � ow
on

ðfx� _cHtgH; 0; tÞ for x 2 ½0; LÞ.
ðA:5Þ
Furthermore, we assume that w is continuous sheared periodic and ow/on obeys Eq. (33). We also assume
that $2w is continuous sheared periodic and o($2w)/on fulfills
oðr2wÞ
on

ð0; y; tÞ ¼ � oðr2wÞ
on

ðL; y; tÞ for y 2 ½0;H �;

oðr2wÞ
on

ðx;H ; tÞ ¼ � oðr2wÞ
on

ðfx� _cHtgH; 0; tÞ for x 2 ½0; LÞ.
ðA:6Þ
Using the assumptions given above we can now derive the weak form from Eq. (A.4): Find the continuous
sheared periodic w, fulfilling Eq. (33) for ow/on such that
ðr2w;r2wÞ ¼ ðg;wÞ; ðA:7Þ

for all continuous sheared periodic functions w, fulfilling Eq. (A.5) for ow/on. Reversely, when the weak
form is satisfied we can easily derive the original biharmonic equation (11), the continuous sheared period-
icity of $2w and Eq. (A.6) for o ($2w)/on. Note, that within a variational context both w and ow/on are
primary variables (�displacements�), whereas $2w and o ($2w)/on are natural variables (�tractions�). Using
x = �$2w we see that the boundary conditions used in the streamfunction formulation are the same as
in the streamfunction–vorticity formulation, which shows the equivalence of the two formulations. This
is quite different for the more common case that Dirichlet conditions for w and ow/on are specified on
the boundary. In that case, complicated integral type boundary conditions for x need to be specified in
order to obtain an equivalent formulation [8].

The compatibility equation (20) is found from the weak form Eq. (A.7) by taking w = 1. Note, that tak-
ing w = x or w = y is not allowed, because these functions are not continuous sheared periodic.

The uniqueness of w can be found by assuming two solutions w1 and w2 fulfilling both the weak form Eq.
(A.7). By subtracting these equations we get
ðr2ðw1 � w2Þ;r2wÞ ¼ 0; ðA:8Þ

for all continuous sheared periodic functions w, fulfilling Eq. (A.5) for ow/on. If we take w = w1 � w2,
which is allowed, we find that
r2ðw1 � w2Þ ¼ 0 in X. ðA:9Þ

Similar to the vorticity equation we can determine w1 � w2 up to an integration constant from this equa-
tion. This result is consistent with the result from the streamfunction–vorticity formulation, as it should,
since we already showed both formulations are equivalent.
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